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Dynamics of vorticity 

By P. G. SAFFMAN 
Applied Mathematics, California Institute of Technology, Pasadena, California 91 125 

Remarks are made about the status of research on the role of vorticity in fluid dynamics 
and some unsolved problems of current int,erest are described. 

1. Introduction 
Why is the vorticity, o = curlu, so important? It is not easily measurable (the 

invention of an accurate, non-intrusive, fine-resolution vorticity meter would be of 
inestimable value for a number of experimental and theoretical applications) and 
appears from its definition to have no particular physical significance; nothing seems 
to distinguish it especially from other gradients of the velocity field. Yet, a t  least for 
the motion of homogeneous incompressible fluids, it  is the property of the flow field of 
crucial import, and it is not an exaggeration to say that all the problems of such flows 
can be posed as questions about the strength and location of the vorticity. There are, 
as is well known, two principal reasons for this. Firstly, if o = 0 everywhere in an 
incompressible fluid, then the fluid really ceases to be a fluid; it loses its infinite 
number of degrees of freedom, which make possible the infinite variety of fluid motion, 
and becomes a flexible extension of the bodies whose movement generates the flow; 
bring the walls to rest and the fluid stops immediately. (The last statement is not 
literally true if the region is multiply connected, but this is a detail.) The motion of 
solids through liquids in which o = 0 can be reduced to a branch of classical mechanics 
and the effect of the fluid can be described completely in terms of a Lagrangian which 
depends only on the co-ordinates of the bodies (and certain cyclic constants if multiply 
connected). Lamb (1932, chap. VI) gives a thorough account of this branch of classical 
fluid mechanics, whose irrelevance to the real world is summarized by the D’ Alembert 
paradox of zero drag in steady flow. The mathematical cause of the loss of fluidic 
properties is the uniqueness properties of Laplace’s equation; the physical reason is 
the relation of vorticity to the local spin of the fluid and the constraints imposed by the 
absence of spin, e.g. an infinitesimal cube does not rotate. Secondly, the distribution of 
vorticity is often compact, even though the velocity and pressure fields extend every- 
where, and remains so by virtue of the Helmholtz laws of vortex motion, apart from 
viscous diffusion. Thus the specification of the vorticity field may be far more 
economical than that of the velocity. 

I n  a real fluid, the no-slip boundary condition or the singularities near sharp corners 
or non-conservative body forces (associated perhaps with density differences) produce 
vorticity which is convected or diffuses into the fluid. The regions containing vorticity 
may be idealized as surfaces of discontinuity (vortex sheets or boundary layers) or 
lines (point vortices) but in dealing with the motion of real fluids we must drop the 
condition 6.1 z 0. Then, to quote Lamb (1932, 8 159a) ‘The motion of a solid in a liquid 
endowed with vorticity is a problem of considerable interest, but is unfortunately not 
very tractable.’ Alternatively, ask any scientist what is the great unsolved problem of 
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fluid dynamics and the immediate answer is turbulence. What is turbulence but a 
random chaotic field of vorticity, whose strong nonlinear interactions makes the 
problem so impossibly difficult? 

Generations of scientists wosking in fluid dynamics have recognized the importance 
of vorticity. It has provided a powerful qualitative description for many of the 
important phenomena of fluid mechanics; e.g. the formation and separation of 
boundary layers have been so described in terms of the production, convection and 
diffusion of vorticity, the dissipation of energy a t  a rate practically independent of the 
viscosity in turbulent flows is explained by the amplification of vorticity by the 
stretching of vortex lines, the lift on a wing is explained by the bound vorticity and 
trailing vortex structure, and most recently the concept of the coherent structure in 
turbulent shear flows has led to the picture of such flows as a superposition of organized, 
‘deterministic ’ vortices whose evolution and interaction is the turbulence. On the 
other hand, the strong nonlinearity of the equations of vortex motion has made 
quantitative use of the concept difficult. Flow geometries which lend themselves to  
analytical investigation or simple numerical treatment have with few exceptions been 
of limited fluid-dynamical interest. But the computer is naw changing the picture and 
giving the modern theoretical fluid-dynamicist a tool with a power far greater than 
those available to  the great scientists who founded and developed the subject. 
Numerical computations are now possible which were j u s t  hopes 25 years ago when 
the Journal of Fluid Mechunics was founded. Some of these have been described in 
recent review articles (e.g. Saffman & Baker 1979, Leonard 1980) and others are in 
press. Our modern ability to calculate vortex motions is also leading to the realization 
that almost irrotational motions such as surface waves on uniform irrotational fluid or 
not too small and not too large air bubbles in water may be successfully treated as 
problems of vortex motion,? the free surface of water waves or the boundary of a 
bubble being a vortex sheet whose position satisfies an integro-differential equation. 
As Kelvin (1880) remarked in the context of an investigation on vortex motion, 
‘ crowds of exceedingly interesting cases present themselves ’. Rather than describe all 
these accomplishments, it is perhaps more suitable and in accord with the spirit of 
the present issue of this journal to discuss some of the outstanding problems of 
both mathematical and physical interest that  are specifically in the area of vortex 
dynamics. Even with super-powerful computers like the Control Data Corporation 
CYBER 205 and the CRAY 1, and the increased understanding of the mathematical 
properties of nonlinear integro-differential equations, these problems tax to the 
utmost our capabilities, but it is expected that significant progress will be reported 
in papers that  appear in the next 25 years of this journal. 

2. The inviscid Taylor-Green problem 
One of the unsolved mathematical problems of three-dimensional motion is the 

global existence of solutions of the initial-value problem for the Navier-Stokes 
equations. Perhaps even harder is the question of existrenee when viscosity is put 
identically equal to  zero and the Euler equations are solved. I n  this case, i t  has been 
speculated for many years that  the nonlinear stretching of vortex lines may proceed 

The second example was suggested by Professor D. IT. Moore. 



Dynamics of vorticity 51 

a t  a rate faster than exponential and some lines may become infinitely long in a finite 
time, signifying a singularity in the vorticity field. 

The existence problems in three dimensions are delicate and apparently outside the 
scope of present mathematical techniques. The vorticity equation in three dimensions 
can be written for inviscid incompressible flow as 

where 

(2.1) 

(2.2) 

is the rate-of-strain tensor, and d ld t  denotes differentiation following the fluid. If eij 
at a point were proportional to the local vorticity, then (2.1) would certainly suggest 
strongly (and rigorous proofs should not be hard) that dwldt  of w2 and w = co in a finite 
time (w = Iwl). The difficulty is that eij a t  a point depends only on the irrotational part 
of the local velocity field and not directly on the local value of w. Thus the increase in 
vorticity following a fluid particle depends on the correlation between the vorticity of 
different elements of the fluid, and the global dependence of velocity on vorticity, 
expressed mathematically through the vector potential formulae 

u = curlA, w = -V2A, A 

has not yet allowed the construction of suitable a priori estimates. 
Taylor & Green (1937) attacked this problem for the Navier-Stokes equations by 

expressing the solution of an initial-value problem as a power series in t .  The particular 
initial flow field chosen was 

u = cosx siny cosz, v = -sinx cosy cosz, u~ = 0, (2.3) 

over all space. The periodicity is invariant and it is sufficient to restrict attention to a 
cube of side 2n with periodic boundary conditions. They wanted to demonstrate the 
growth of vorticity for small viscosity, and calculating by hand they found the coeffi- 
cient of t4 in the Taylor series expansion of 2. 

Recently, Morf, Orszag & Frisch (1980) have extended this calculation, using the 
computer to do the arithmetic, and found the coefficients of terms up to t44 for the 
inviscid case v = 0. The odd powers vanish identically so 22 coefficients were actually 
found; the calculation of these coefficients and similar ones for the mean values of 
higher powers of the velocity field required 7 h on a CDC 7600. The purpose of this 
calculation is to determine the singularities of 2 regarded as an analytic function of 
the complex variable t .  Since the initial conditions are smooth, the function is analytic 
a t  t = 0. The task is to continue the function analytically, given a finite number of its 
Taylor series coe5cients at the origin, and find in particular if there are singularities on 
the positive real axis. If no more information is given, the problem is ill-posed, but the 
hope is that one can nevertheless estimate from a finite number of coefficients the 
positions and nature of the singularities by the methods of Domb-Sykes plots and 
Pad6 approximants, etc. This technique, originally developed in statistical mechanics, 
has had some success in fluid mechanics, especially in finite-amplitude gravity waves 
on deep water, but it is a ‘black box’ and the results can never be taken as more than 
suggestive until an independent verification is given. The interesting result of Morf 
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et al. (1980) is the finding by these techniques of a branch point singularity with 
negative exponent a t  t = t, + 5.2. 

If this result is correct, and the speculation is confirmed that the initial-value 
problem for the Euler equations in three dimensions is in general ill-posed, it must 
rank as one of the more important discoveries of fluid mechanics. The possible appear- 
ance of a spontaneous singularity in three-dimensional motion would strike a blow 
a t  the validity of the myriad of inviscid two-dimensional unsteady calculations, all 
relying for applicability on the hope that three-dimensionality and viscosity are 
small perturbations, since it would imply that viscosity is always esective in a finite 
time independent of its value when the flow is three-dimensional. It would also, for 
example, provide justification for the assumption of an inviscid energy cascade in high 
Reynolds number turbulence. On a different level, it would demonstrate conclusively 
the role of the computer as a major weapon for the qualitative investigation and 
discovery of phenomena, on a par with experiment and classical analysis, and more 
productive so far in any real sense than the techniques of ‘modern mathematics’. 
But rather more convincing evidence than the Morf et al. (1980) calculation is needed 
before the result can be accepted with confidence. This problem is one of the most 
challenging of the present time for both the mathematician and the numerical 
analyst. 

It is appropriate to mention here a related problem, physically less important but 
mathematically and computationally just as interesting, namely the existence of 
unsteady inviscid vortex sheets in two dimensions. Three-dimensional vortex sheets 
would just constitute a special case of the three-dimensional Euler equation, but in two 
dimensions it is established that solutions of the Euler equations exist for all time if the 
initial data is smooth. The vortex sheet is not a smooth solution, but it is one which 
is used to  model important physical phenomena, such as the Kelvin-Helmholtz 
instability of shear layers and the formation of wakes by the roll-up of separating 
bomdary layers. If, in general, a two-dimensional vortex sheet develops a singularity 
in a finite time, the consequences for our analysis of many flows would be non- 
negligible. Recently, Moore ( 1  979) has presented suggestive evidence that vortex 
sheets of zero thickness do indeed develop singularities in a finite time, caused by the 
nonlinear excitation of short waves which amplify rapidly. The physical mechanism 
is fundamentally different from that which causes the claimed three-dimensional 
singularity, since there is no vortex line stretching in two dimensions, and can perhaps 
be thought of as a result of unbalanced pressure forces over highly crinkled vortex 
sheets. It can also be expected to apply in three dimensions, after vortex stretching 
produces sheets of intense vorticity, but whether the two mechanisms interfere 
constructively or destructively remains to be elucidated by analysis and computation. 

3. Inviscid flow past bodies 
Another of the challenging unsolved problems of fluid mechanics is the limiting form 

of steady solutions of the Navier-Stokes equations describing flow past bluff bodies as 
v -+ 0. This problem is often dismissed as unrealistic and of academic interest only, 
since in reality the boundary layer and/or wake become turbulent. But there always 
exists the possibility that  a better understanding of the fluid mechanics coupled to 
feed-back control or changes ofgeometry may enable thesuppression oftheinstabilities 
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or at least delay their onset, allowing the advantages of laminar flow to be exploited. 
The contribution of vortex dynamics to  the problem lies in the determination of the 
possible inviscid but not necessarily irrotational flow states. 

The irrotational flow past a body is unique, except for some arbitrariness associated 
with multiple connectivity. But there exist an infinite number of rotational flows 
depending upon the allowed vorticity distributions. Three special cases seem to be of 
most interest as most likely to be realizable or worth considering as the v = 0 limit of 
Navier-Stokes solutions. One point should be made clear; there is no reason why the 
boundary conditions should not be €unctions of v, e.g. there could be blowing or 
suction through the boundary a t  rates depending on v, and the limit as v -+ 0 need not 
be unique. Indeed, the continual discovery of new bifurcation phenomena in fluid 
mechanics would make it surprising if the limit were unique. Professor Roshko has 
commented that flow past a thick airfoil is a possible example, for which plausible 
alternative motions could be either a flow separating near the section of maximum 
thickness with the tail in the dead-water region of the near wake or the streamline 
irrotational flow around the entire body. 

The first case (i) is the Kirchhoff-Helmholtz limit, in which vortex sheets emanating 
from the body and stretching to infinity separate a region of stagnant fluid from the 
irrotational stream. There is some arbitrariness here in determining the point of 
separation but it can usually be handled by a minimum singularity type hypothesis. 
This case has the advantage that it predicts a finite drag and that in two dimensions 
exact solutions can be calculated for polygonal bodies. 

The second case (ii) will be designated the attached vortex model. Here, finite 
vortices are supposed attached to the body and the flow a t  infinity is irrotational. The 
vorticity is finite so Lhat the velocily is continuous, i.e. the edges of the vortices are not 
vortex sheets. The Helmholtz laws for steady motion impose some constraints on the 
vorticity distribution, e.g. in two dimensions the vorticity must be a function of the 
stream function, but there will be a large amount of arbitrariness in the size and 
structure of the vortices. A degenerate example of a flow of this kind is Foppl’s calcu- 
lation of the flow past a circular cylinder with two point vortices standing in the wake 
(see Lamb 1932, 3 155). A similar exampleis the Saffman & Sheffield (1977) calculation 
of flow past an inclined flat plate with a single vortex standing over the plate, which 
showed the possibility of considerable lift enhancement if such a flow could be 
generated. Solutions with finite vortices have not yet been computed. This case suffers 
from the disadvantage ( 2 )  of predicting zero drag. A more serious objection is that 
separating streamlines leave perpendicularly (at least in two dimensions) and fitting 
viscous boundary layers might be impossible, even with surface suction, so these flows 
would not be v = 0 limits. 

Case (iii), the Batchelor (1956) limit, is the attached vortex flow with vortex sheets 
bounding the outside edges of the vortices and uniform vorticity inside each one in two 
dimensions, and the appropriate modification for axisymmetric flow. This flow can be 
regarded as a hybrid of the first two cases; the advantage of allowing vortex sheets is 
that the streamlines can presumably separate smoothly, increasing the chance of these 
flows being v = 0 limits. It appears, however, that Batchelor flows have not yet been 
computed so that their existence remains an open question. 

It should perhaps be stressed that existence of vortex flows is a non-trivial question, 
not just a mathematical nicety or an exercise in proving the obvious. Recent calcula- 
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u - 0  
( 1 )  

(iia) 

(iib) 

(iii) 

FIGURE 1. Sketches c possible inviscid rotational flow past a bluff body. (i) Kirchhoff- 
Helmholtz flow. Vortex sheets bound an infinite stagnant region. Finite drag. (ii) Flows with 
attached vortices. No vortex sheets. a, symmetrical flow past a bluff body; b, unsymmetrical 
flow past a wing. Zero drag but lift in case b. (iii) Batchelor flow. Vortex sheets bound attached 
vortices. Zero drag. 

tions of steady two-dimensional arrays of finite vortices (e.g. Saffman & Szeto 1981) 
have shown that there are no solutions if the vortices are too large, so existence of 
solutions cannot just be taken for granted. 

The three cases are sketched in figure 1.  For two-dimensional flow and constant 
vorticity, integro-differential equations can be derived for the unknown shapes of the 
vortex sheets or bounding streamlines. It is nowadays a reasonably straightforward 
matter to obtain solutions of the equations using global Newton methods, provided a 
sufficiently large comput.er and adequate computing time are available. The principal 
difficulty lies in ensuring that the solution of the discretized system actually approxi- 
mates a solution of the integro-differential equation since nothing more than consi- 
stency checks seem to be available. 

Once the inviscid rotational flows have been catalogued, we are of course faced with 
the yet more difficult task of finding which are realizable. Perhaps this problem will be 
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discussed in the issue commemorating the 50th anniversary of the Journal of Fluid 
Mechanics. 

4. Vortex stability and interactions 
The stability of steady vortex configurations in an inviscid fluid to infinitesimal and 

finite-amplitude disturbances is of considerable interest but poses great difficulties. 
The Kelvin-Helmholtz instability of vortex sheets has been thoroughly examined, as 
has also the stability of steady configurations of point vortices to two-dimensional 
disturbances motivated strongly by interest in the KBrmBn vortex wake behind bluff 
bodies and more recently by studies of Helium 11. But there are still puzzles here, and 
a large number of other challenging and important problems exist for which ignorance 
reigns supreme. 

The KArmiin vortex street of two infinite staggered rows of opposite signed vorticity 
is a particular mystery. Observations of vortex wakes, for which the street is a model, 
suggest that the street is stable, yet calculations show it is unstable. The particular 
spacing ratio 0.281 found by KBrmBn to give neutral stability is now known to be 
spurious; it is a momentary vanishing of the growth rate of infinitesimal disturbances 
due to a coincidence of eigenvalues and the configuration is unstable to finite-ampli- 
tude disturbances. The common speculation is that giving the vortices finite size will 
stabilize the array to two-dimensional disturbances, and there is some numerical 
(Christiansen & Zabusky 1973) and analytical (Saffman & Schatzman 1980) evidence 
to support this belief, but completely convincing evidence is lacking. As regards the 
stability to three-dimensional disturbances, there are a couple of 50-year-old incom- 
plete investigations of stability to long wave axial disturbances, but otherwise nothing. 

Indeed the whole question of three-dimensional stability is wide open. (The Squire 
theorem for parallel shear layers has perhaps had an inhibiting effect on stability 
calculations.) There is probably a wide range of phenomena waiting to be discovered. 
As an example, see the results described by McLean et al. (1980) on the stability of 
finite-amplitude water waves, which can be regarded as non-uniform vortex sheets, to 
three-dimensional disturbances. 

A particular question worthy of study is the difference in the stability of inviscid 
flows of boundary-layer type, wake type, or free shear layer type to three-dimensional 
disturbances. In  the first instance, each flow can be modelled by a vortex sheet of 
finite thickness; the type of flow corresponds to either the presence of a rigid wall or the 
requirement of symmetry or antisymmetry. It is expected that these flows will have 
a primary instability or bifurcation into a steady non-uniform flow. Two-dimensional 
finite-amplitude non-uniform flows have been calculated for the free shear layer 
(Stuart 1967, Saffman & Szeto 1981)) and there is no obvious reason why they should 
not also exist for the boundary-layer type configuration or with the staggered 
symmetry appropriate for a wake. I n  f u t ,  there is no obvious reason why three-dimen- 
sional, finite-amplitude steady flows should not exist for each case. The interesting 
question now is the secondary instability of these configurations to arbitrary three- 
dimensional disturbances. The experimental evidence suggests as a plausible specula- 
tion that the free shear layer type is weakly unstable, the wake type is moderately 
unstable, and the boundary-layer type is strongly unstable, but it remains to be seen 
if this is confirmed by calculation. 
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FIGURE 2 .  Photograph of vortex interactions by Glezer (1981). Eight vortex rings formed from 
pulses of 20 ms duration are shot one after the other at  85 ms intervals and separate after going 
about 20 diameters in a spectacular blooming. The leading vortex ring is out of the picture. 

The computing resources now exist to find the eigenvalues of systems governed by 
partial differential equations. The ability to separate variables and reduce to ordinary 
differential equation eigenvalue problems is no longer essential. The stability of non- 
parallel flows to two- and three-dimensional infinitesimal disturbances is then a feasible 
calculation; the only technical limitation would seem to be the availability of the 
computer resources. It can be argued tha t  we are entering a stage of research in which 
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the problem is to decide what to calculate, not how to calculate. Strangely enough, this 
will make analysis more, not less, important because of the needs first to provide checks 
on the flood of numbers and second to guide, organize, interpret and make sense of the 
computations. Rather than study infinitesimal disturbances and calculate spectra, 
some investigators who have developed unsteady codes study instability by calculating 
initial-value problems. There is the advantage here that finite-amplitude effects are 
automatically taken into account, but there is the serious drawback that only a few 
cases can be considered and a complete picture cannot be obtained. The extent to which 
the initial excitation is typical is always arguable. Also sound methods need to be 
developed to distinguish between numerical instability and transition to turbulence; 
all too often the former is identified as the latter. In  three-dimensional inviscid 
calculations, the ill-posedness discussed in 9 2 may be a factor. 

One particular motion exemplifies the whole range of problems of vortex motion 
and is also a commonly known phenomenon, namely the vortex ring or smoke ring. 
Vortex rings are easily produced by dropping drops of one liquid into another, or by 
puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is 
a problem of vortex sheet dynamics, the steady state is a problem of existence, their 
duration is a problem of stability, and if there are several we have the problem of 
vortex interactions. Saffman & Baker (1979) in their review of vortex interactions 
commented that they knew of no well-documented case of vortex ring leapfrogging; 
in full accordance with Murphy’s law or one of its corollaries, two papers showing this 
were found after the article was in press (Oshima 1978, Yamada & Matsui 1978). 

One of the most fascinating examples of vortex interactions is provided by the 
collision of vortex rings. Under the appropriate circumstances, two rings shot a t  one 
another in a plane will merge into a single, ellipse-like ring, which oscillates and then 
breaks up into two separate rings moving in a plane normal to the original one. Each 
new ring is a mixt,ure of the old ones. Oshima & Asaka (1975) show colour photographs 
of a red and yellow ring colliding and separating after collision into two rings each half 
yellow and half red. The details of the breaking and rejoining of vortex lines which 
takes place when the vortices collide and reform is a mystery awaiting satisfactory 
explanation. 

Figure 2 is a remarkable photograph by Glezer (1981) of vortex ring interaction. 
Numbers of vortex rings are shot from an orifice one after another at short (t’ypically 
50-looms) intervals. For some distance they travel along a common axis, and then 
separate in a spectacular manner. This phenomenon is fairly repeatable and is an apt 
demonstration of the complexities of vortex motion. 

5. Conclusion 
There can be no doubt that in any list of the most important papers in fluid 

mechanics, a prominent place will be held by Helmholtz’s great paper ‘Ober Integrale 
der hydrodynamischen Gleichungen welche den Wirbelbewegungen enhprechen ‘t 
whose appearance in 1858 laid the foundations of the study of rotational or ‘vortex’ 
motion and together with the subsequent papers of Lord Kelvin provides the basis 

t For an English translation, see Helmholtz (1867). The paper contains an extract from a 
letter by Lord Kelvin to P. G. Tait, in which he states without proof the classic formula for the 
speed of a thin vortex ring. This formula has caused much anguish. 
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for the understanding and description of rotational fluid motion under conditions such 
that the direct effect of viscosity is not important. A measure of the quality and 
significance of the paper is that, although it is 123 years old, i t  is as good and clear an 
exposition as any, and is old-fashioned only in the use of Cartesian notation (like 
Lamb's 1932 text) rather than the modern vector or tensor notation. It is not SUP 

prising that Lord Kelvin (1867) was so moved by the elegant concept of vorticity and 
vortex rings in a perfect fluid to  propose his theory of vortex atoms. Although the 
application to  the structure of matter was short lived, the study of the dynamics of 
vorticity has remained active in fluid mechanics research. The computer is giving the 
theoretician a new and potent tool which can be expected to  have powerful conse- 
quences, and the experimental discoveries of coherent structures in turbulence are 
providing a further practical impetus for the investigation. 
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